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Abstract: Qualitative precipitation forecasting plays a vital role in marine operational services.
However, predicting heavy precipitation over the open ocean presents a significant challenge due
to the limited availability of ground-based radar observations far from coastal regions. Recent
advancements in deep learning models offer potential for oceanic precipitation nowcasting using
satellite images. This study implemented an enhanced UNet model with an attention mechanism
and a residual architecture (RA-UNet) to predict the precipitation rate within a 90 min time frame. A
comparative analysis with the standard UNet and UNet with an attention algorithm revealed that the
RA-UNet method exhibited superior accuracy metrics, such as the critical ratio index and probability
of detection, with fewer false alarms. Two typical cases demonstrated that RA-UNet had a better
ability to forecast monsoon precipitation as well as intense precipitation in a tropical cyclone. These
findings indicate the greater potential of the RA-UNet approach for nowcasting heavy precipitation
over the ocean using satellite imagery.

Keywords: oceanic precipitation nowcasting; deep learning; UNet; attention mechanism; residual
network; Himarawi-8 images

1. Introduction

Severe precipitation and associated convective activities pose significant challenges
for oceanic safety, leading to hazards such as tropical storms and large ocean waves, which
increase navigational risks, resulting in substantial economic losses and casualties [1]. Ac-
curate precipitation forecasts play a vital role in mitigating human and economic losses, of-
fering various social and economic benefits [2–4]. However, predicting heavy precipitation
over the open ocean is a significant challenge due to the absence of real-time ground-based
observations far from coastal areas. The rapid development, short life cycles, and highly
nonlinear dynamics of convective precipitation make precise forecasting difficult [5,6].

The most commonly used approach for precipitation forecasting is numerical weather
prediction (NWP) based on numerical models. These models are grounded in the funda-
mental kinematic and state equations of the atmosphere, thus providing reliable day-to-day
weather forecasts. However, NWP encounters challenges referred to as the spin-up problem
in nowcasting, affecting forecast accuracy within a three-hour window [6–8]. Consequently,
forecasting based on radar observations has emerged as an alternative for precipitation
nowcasting. Radar echo reflectivity, along with additional data from sounding, mesonet,
and profiler observations [9–11], is often used in radar-echo-based extrapolation for weather
nowcasting because of its high temporal and spatial resolution. These techniques involve
the identification of convective storms by tracking and extrapolating their movement using
techniques such as cross-correlation and optical flow algorithms [12–15]. Subsequently,
precipitation rates are estimated based on the empirical correlation between the radar
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reflectivity factor and precipitation rates, which is known as the Z-R relationship [16,17].
Despite their effectiveness in storm predictions within 30 min, forecast accuracy diminishes
with longer lead times [18,19]. Moreover, the high costs of installation and maintenance,
alongside the limited radar network coverage, pose obstacles to the widespread application
of radar-based precipitation forecasting methods [20–22].

Advancements in satellite-based observations, such as visible/infrared (VIS/IR) im-
ages and active/passive microwave data, offer essential atmospheric information for
nowcasting over the open ocean. These instruments address existing limitations by pro-
viding near-global precipitation datasets and near-real-time imagery. IR-based products
enable real-time monitoring and estimation of precipitation with enhanced temporal and
spatial resolutions over the open ocean. The VIS/IR methodology relies on identifying
convective activity through cold and bright clouds, with colder cloud tops indicating signif-
icant vertical development and heavier precipitation. The correlation between IR-derived
cloud-top temperatures and surface precipitation intensity allows for the estimation of
precipitation from IR data [21,23–27]. Unlike meteorological radar, which directly detects
raindrops, satellite VIS/IR images measure the reflectivity or thermal radiation of clouds.
Consequently, the latter is less related to the qualitative measurement and forecasting of
precipitation; thus, nowcasting oceanic precipitation remains a challenge.

In recent years, deep learning neural network (DNN [28]) techniques have made
substantial progress in geophysical research, particularly in the parameterization of model
physics [29,30], ENSO prediction [31–33], and precipitation forecasting [34,35]. These
advancements have resulted in the possibility of realizing and improving the accuracy of
real-time oceanic precipitation nowcasting. Originally, most of these deep learning models
were widely used to solve computer vision problems, and they were subsequently gradually
proposed to boost the performance of geophysical nowcasting tasks, such as convolutional
neural networks [35], recurrent neural networks [36], and Transformers [37,38]. Briefly,
an observed precipitation field sequence is treated as a frame of a video used as the
input/output of a DNN, which is trained as a forecasting model. These approaches
directly predict precipitation at each grid location and have shown promise in predicting
low-intensity rainfall using metrics such as the critical success index (CSI), aiming to
better model traditionally complex nonlinear precipitation phenomena [39–42], including
convective initiation and heavy precipitation [35]. Recently, with the booming use of real
radar frames to generate radar frames, generative modeling has attracted much attention,
and various models have emerged [43], such as generative adversarial network-based
models, e.g., DGMR [8] and GA-SmaAt-GNet [44], as well as diffusion-based models,
e.g., Prediff [45] and SRNDiff [46]. Furthermore, with the popularity of the new neural
network architecture ViT [47], some works (e.g., FourCastNet [48], Rainformer [49], and
Earthformer [50]) have also attempted to apply various Transformer variants [51] to the
field of precipitation nowcasting. However, the design of these large Transformer-based
models relies on massive samples to learn the underlying laws, which consumes huge
computational resources beyond the reach of ordinary researchers [6].

In the field of precipitation nowcasting, a significant milestone was reached by
Shi et al. (2015) [39] when they first introduced a neural network model for spatiotem-
poral forecasting known as convolutional long short-term memory (ConvLSTM) to pre-
dict precipitation 90 min ahead using radar-based imagery. The model improved the
correlation coefficient by 7% and the detection probability by 5% compared with the
conventional optical flow method [52]. This pioneering work has since sparked numer-
ous subsequent studies [6,36,53–59]. From the perspective of models, ConvLSTM-based
architectures are capable of modeling the dynamics of the environment, but they of-
ten suffer from mode-averaging and limited long-term dependencies between sequence
elements [60]. In addition, the structure of ConvLSTM is considered relatively fixed due to
its foundation on LSTM integrated with convolutional operations, which makes it difficult
to efficiently capture and process complex spatial details and pixel-level prediction tasks.
The UNet architecture is based on multilayer convolutional neural networks and offers
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greater flexibility in processing different types of data by modifying the structure of the
encoder and decoder; it is similar to a convolutional neural network but is better suited
for pixel prediction (predicting the rates of precipitation at each grid point) [5,61–63] than
ConvLSTM-based models. UNet is increasingly used in spatiotemporal forecasting studies,
such as in those of nowcasting of lightning [63,64] and floods [65].

Although many forecasting models for precipitation have been developed, they are
usually based on ground-based radar observations. Only a few studies have designed deep
learning models for precipitation nowcasting using satellite data [42,66,67], especially for
oceanic precipitation nowcasting. More recently, the Integrated Multi-Satellite Retrievals
for Global Precipitation Measurement (IMERG [68]) satellite data and Global Forecast
System (GFS) forecasts ([69]) were used [66] to train neural networks by fusing a UNet
and a convolutional long short-term memory (LSTM) neural network for the nowcasting
of precipitation almost globally every 30 min with a 4 h lead time. The results showed
the potential of IMERG for oceanic precipitation nowcasting at high spatial and temporal
resolutions. Despite these advances, there is still a lack of research on oceanic precipitation
nowcasting. Therefore, in this study, high-resolution satellite data were utilized to study
near-real-time oceanic precipitation nowcasting.

Furthermore, recent studies demonstrated that attention mechanisms [70] and residual
architectures [71] can significantly enhance prediction performance. Both of these methods
are enhanced by a skip connection [72], which allows for a better comparison with the
original UNet. In the attention UNet established by Oktay (2018) [70], attention gates (AGs)
are added to the skip connections to maintain a high prediction accuracy without the need
for an external organ localization model [72]. In addition, residual blocks address the
problem of vanishing gradients, which often occur when stacking multiple layers in a deep
neural network, as well as the degradation problem, which leads first to saturation and
then to the degradation of accuracy as more and more layers are added to the network,
thus enabling deeper network architectures [71].

Consequently, this study employs UNet as the backbone model for oceanic precipita-
tion nowcasting and explores the capabilities of UNet, the attention UNet (Att-UNet), and
the residual UNet with attention (RA-UNet). The paper extends previous efforts to the open
ocean where high-resolution observations are lacking. The satellite observations with high
temporal and spatial resolution (0.1° × 0.1°, 30 min) over the ocean are utilized to construct
an oceanic precipitation nowcasting model. Then, the UNet and two variant architectures
(Att-UNet and RA-UNet) are examined, which promise improved nowcasting of oceanic
precipitation extremes. The rest of this paper is organized as follows: Section 2 describes
the data, evaluation methods, and experimental design; Section 3 describes the preprocess-
ing approach and UNet architectures with an attention mechanism and a residual structure;
Section 4 evaluates and interprets the results; and Section 5 concludes and discusses
the findings.

2. Data and Methodology
2.1. Data

This study aims to evaluate several UNet-based deep learning models in their predic-
tion of oceanic precipitation in the next 1.5 h in a limited area over the tropical western
North Pacific Ocean, covering 119.2◦–131.9◦E, 12.8◦–25.59◦N. This area features a hot
and humid climate, with frequent monsoonal convection activity and tropical cyclones.
Himawari-8 is of the new generation of geostationary satellites, providing near-real-time
observations of eastern Asia, and its bright temperature data have been widely used for the
spatial coverage of convection [61], as well as for the prediction of extreme precipitation
events [73]. Thus, Himawari-8 serves as a superior proxy for near-real-time prediction with
an extensive spatial range and was used in this study as the predictor in the deep learning
model, as illustrated in Figure 1a–g. Launched by the Japan Meteorological Agency (JMA)
in October 2014 [74], this geostationary meteorological satellite (GMS) provides sixteen
observation bands, including three visible bands, three near-infrared bands, and ten in-
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frared bands (Table 1). The observation bands of the satellite facilitate the understanding of
vegetation, aerosol, sea-surface temperature, cloud, and moisture conditions. Additionally,
the spatial resolutions of the observations are 0.5–1.0 km for visible bands and 1.0–2.0 km
for near-infrared and infrared bands. Seven of the infrared bands associated with precipi-
tation, each with a spatial resolution of 2 km every 10 min, were employed, as suggested
by Lagerquist et al. (2021) [61] (Table 1). Furthermore, all seven brightness temperature
bands (8, 9, 10, 11, 13, 14, 16) are in the infrared part of the spectrum and have traditionally
been used to forecast convection due to their greater interpretability in comparison with
infrared radiation. In this study, the brightness temperature was utilized as a predictor for
the model. Finally, the spatial resolution of the model was 0.1◦ × 0.1◦, covering a total of
128 × 128 grid points every 30 min.

The ground-truth data for the model input were sourced from the Integrated Multi-
Satellite Retrievals (IMERG) for the Global Precipitation Measurement (GPM) dataset [68]
(Figure 1h). The IMERG product provides gridded high-resolution estimates of precip-
itation rates with a spatial resolution of 0.1◦every 30 min, and it is calibrated based on
the deviation of the monthly observation data from ground rainfall stations. These data
have been widely used in precipitation forecasting to fill in gaps where radar coverage is
limited [22,66]. IMERG products offer the significant advantages of providing near-global
(from 60◦S to 60◦N) precipitation estimates from March 2014 onward, integrating data
from passive microwave and infrared satellites within the GPM constellation. The pre-
cipitation rate variables are provided in near real time —marked as IMERG Early and
Late—and as post-real-time research data, i.e., IMERG Final, after incorporating a monthly
rain gauge analysis. For this study, even the Early data had a time delay of 4 h, which
made it difficult to use them for real-time forecasting, but the precipitation products were
sufficiently reliable without taking the errors in the data themselves into account, so the
L3 final precipitation product from IMERG version 6 was used here as the true value for
validation purposes. Ultimately, data from 1 January 2017 to 31 December 2018 were used,
with the 2017 data being divided into a training set and a validation set for model training,
while the 2018 data were used as a test set for model evaluation.

Table 1. Characteristics of the spectral bands of Himawari-8.

Band No. Central Wavelength (µm) Spatial Resolution (km) Physical Properties Usage

1 (visible) 0.47 1 Vegetation, aerosol No
2 (visible) 0.51 1 Vegetation, aerosol No
3 (visible) 0.64 0.5 Vegetation, low cloud, fog No
4 (Near-infrared) 0.86 1 Vegetation, aerosol No
5 (Near-infrared) 1.6 2 Cloud phase No
6 (Near-infrared) 2.3 2 Particle size No
7 (Infrared) 3.9 2 Low cloud, fog, forest fire No
8 (Infrared) 6.25 2 Mid- and upper-level moisture Yes
9 (Infrared) 6.95 2 Mid-level moisture Yes
10 (Infrared) 7.35 2 Mid- and lower-level moisture Yes
11 (Infrared) 8.6 2 Cloud phase Yes
12 (Infrared) 9.6 2 Ozone content No
13 (Infrared) 10.45 2 Cloud imagery, information of cloud top Yes
14 (Infrared) 11.2 2 Cloud imagery, sea-surface temperature Yes
15 (Infrared) 12.4 2 Cloud imagery, sea-surface temperature No
16 (Infrared) 13.3 2 Cloud-top height Yes
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Figure 1. An example of the input data valid at 1800 UTC on 3 June 2017. (a–g) Brightness temperature
(K) in each spectral band from the Himawari-8 satellite images; (h) precipitation rate from the GPM
IMERG products (mm h−1).
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2.2. Evaluation Methods

Three metrics were used for model verification: the probability of detection (POD),
false alarm ratio (FAR), and critical success index (CSI; Table 2 [75]). The POD was used to
assess the model’s accuracy in predicting events according to the ratio of correct predictions
to the total number of actual events. The FAR was used to gauge the rate of false alarms in
model predictions according to the ratio of the number of false alarms (incorrectly predicted
events) to the total number of predicted events. The CSI, also known as the threat score
(TS), provides a comprehensive evaluation of a model’s predictive skill by combining hits,
misses, and false alarms. The CSI is the ratio of correct predictions to the sum of actual
events and false alarms.

The metrics of the CSI, POD, and FAR all range from 0 to 1, with a perfect score of 1.
Higher values indicate better performance for both the POD and CSI, while a lower
FAR value represents better performance in reducing false alarms. It should be recalled
that in the CSI metric, the elements of a confusion matrix are determined for a binary
representation of the precipitation fields with the rates above a prespecified threshold
in mm h−1. To evaluate the performance of the regression network using the classification
scores, three thresholds were set: 0.1 mm h−1 (also treated as a rainfall forecast), 1 mm h−1,
and 5 mm h−1.

Table 2. The true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) rates
characterize the confusion matrix. TP refers to the number of grid pixels where both the observed
and predicted rain rates are greater than the threshold; FP refers to the number of grid pixels where
the observed rain rate is lower than the threshold, while the predicted rain rate is greater than the
threshold; FN refers to the number of grid pixels where the observed rain rate is greater than the set
threshold, while the predicted rain rates are lower than the threshold. These three metrics serve as
benchmarks for assessing prediction accuracy.

Score Definition Range Optimal Value

Probability of detection (POD) TP/(TP + FN) [0, 1] 1
False-alarm ratio (FAR) FP/(FP + TP) [0, 1] 0
Critical success index (CSI) TP/(TP + FN + FP) [0, 1] 1

2.3. Experimental Design

The precipitation nowcasting problem is defined as predicting the precipitation rate
for the upcoming 1.5 h in 30 min intervals by utilizing brightness temperature data
from 3 h prior, as shown in Equation (1).

P̂t+30min, . . . P̂t+90min = M
(

B̂t−150min, . . . B̂t0
)
, (1)

where M represents the deep learning model for nowcasting, and each instance contains
data of 9 time steps in total. The observations from Himawari-8 at various time steps are
stacked together to create the channel dimension. Finally, each input sample for the model
consists of 6 time steps (past Himawari-8 brightness temperatures) spanning 7 bands with
a size of 128 × 128. The model output samples are 3 time steps (future precipitation rates)
with a size of 1 × 128 × 128. For each initial time t0, precipitation nowcasting is available
only if the following hold:

1. The Himawari-8 satellite data used as predictors are accessible at all necessary time
lags (t0, t−30min, t−60min, t−90min, t−120min, and t−150min);

2. The GPM satellite data, which act as labels, are obtainable at the required future times
(t+30min, t+60min, and t+90min).

Three experiments, namely, experiments with UNet, Att-UNet, and RA-UNet, were
conducted by utilizing the UNet architecture to evaluate the influence of incorporating
attention and recurrent residual mechanisms into the model. Att-UNet integrated attention
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gates to refine the features transmitted via the skip connections within the UNet framework,
while RA-UNet incorporated a residual structure into Att-UNet. The specifics of these
models are elaborated on in the subsequent section.

The loss function used to optimize the UNet parameters during training was the mean
absolute error (MAE), also referred to as the L1 loss, which is utilized in regression tasks to
calculate the average absolute disparities between predicted values from a model and the
actual target values. For instance, the MAE is defined as

MAE =
∑n

i=1

∣∣∣(ypred

)
i
−

(
ytarget

)
i

∣∣∣
n

(2)

3. Preprocessing and Model Architecture
3.1. Preprocessing Processes

The data preprocessing processes are depicted in Figure 2. As the GPM precipita-
tion data had a maximum resolution of 0.1◦ every 30 min, the Himawari-8 satellite data
were interpolated from 2 km × 2 km to 0.1◦× 0.1◦ for consistency and computational
efficiency (Figure 2).

Figure 2. Flowchart of data preprocessing for the Himawari-8 and GPM datasets.
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Following the interpolation process, adjustments were made to both the brightness
temperature and precipitation fields to facilitate the generation of 30-minute-interval fore-
casts. Moreover, instances of extraneous noise within the interpolated brightness tem-
perature dataset were identified as missing values and subsequently excluded from both
the brightness temperature and precipitation variables at specific intervals. It was ob-
served that a considerable fraction of precipitation measurements fell within the range
from 0.0 to 1.0 mm h−1, indicating notable right skewness. This distribution skewness is
commonly associated with the relatively high frequency of clear days [76]. Generally, the
alleviation of right skewness can greatly enhance the clarity of data patterns. Hence, a
logarithmic transformation that specifically used log(x + 1), in conjunction with a filtering
technique, was employed to condense the skewed data [77]. As shown in Figure 3, the
skewness was greatly reduced after the transformation.

Figure 3. Probability density function of precipitation samples from the GPM data (unit: mm h−1)
before (a) and after (b) performing the log(1 + x) transformation.

The preprocessing process involved setting up both an intensity threshold and an
area threshold. At each time step of the GPM data, the area within the rain rate data that
exceeded the intensity threshold was computed and recorded as the area evaluation [5].
If the peak of area evaluations was determined to be lower than the area threshold, the
data sample was classified as “non-rainy” and consequently omitted from the datasets.
Practically, the intensity and area thresholds were set to 0.1 mm h−1 and 1024 km2, respec-
tively. This area size was large enough to capture precipitation phenomena relevant to our
study and efficiently excluded non-rainy samples without compromising the integrity of
the data distribution.

Following the exclusion of non-rainy days, the dataset contained 12,740 samples for
analysis. In the final preparation step before model input, both the brightness temperature
and rain rate data were normalized using z-score standardization as follows:

varstd =
var − mean(var)

stddev(var)
(3)

In addition, for training and validation purposes, the data from the year 2017 were
utilized with a split ratio of 7:3. The testing period covered the full year of 2018.

3.2. Model Architecture

In this study, a sophisticated variant of the UNet architecture known as Res-UNet
with attention (RA-UNet) [78] was employed to enhance the accuracy of rainfall rate
predictions, as depicted in Figure 4. The model is based on the UNet architecture proposed
by Ronneberger et al. (2015) [79]. The whole network structure is shaped like the letter “U”,
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so it is named UNet. The U-shaped model consists of four main components, which are
shown in Figure 4: convolutional layers, pooling (for downsampling), upsampling layers,
and skip connections. The left-hand side is the downsampling side, that is, the encoding
process, and the right-hand side is the upsampling side, that is, the decoding process. The
convolutional layers are responsible for identifying spatial features, and their coordinated
operation with other components allows distinct convolutional layers to capture features
across different resolutions. This capability is crucial for predicting weather phenomena
due to their inherent multiscale complexities [61]. The initial layer takes raw predictors
as inputs, and subsequent layers receive transformed versions of these raw predictors,
which are known as feature maps. Through the convolution process, which involves both
spatial and multivariate transformations, these feature maps effectively encode spatial
patterns that encompass all predictor variables. Additionally, within the framework of a
convolutional neural network or UNet, a nonlinear activation function is systematically
applied after each convolutional layer.

Figure 4. A diagram of RA-UNet.

In the UNet architecture, each pooling layer reduces the spatial resolution of the fea-
ture maps using a 2 × 2 maximum filter. To compensate for the loss of spatial information,
the number of feature maps typically increases to offset the loss of spatial information.
On the other hand, each upsampling layer increases the spatial resolution of the feature
maps using interpolation followed by convolution. The convolution step is crucial be-
cause interpolation alone cannot effectively reconstruct high-resolution information from
low-resolution counterparts. In this process, the number of channels typically decreases
as the spatial resolution increases, ultimately reaching the number of output channels.
Additionally, skip connections play a crucial role in preserving high-resolution information
from the downsampling side and transferring it to the upsampling side. Without skip
connections, the UNet architecture would suffer from cumulative loss of spatial information
due to successive downsampling and upsampling operations. This loss is referred to as
a “lossy operation” [79] and reduces the network’s ability to reconstruct high-resolution
features in the output accurately.
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Building on UNet, attention UNet (Att-UNet) [70] was developed by integrating an
additive attention gate, enhancing model sensitivity and prediction accuracy with minimal
computational overhead. Attention gates filter the features transmitted through the skip
connections. Primarily, input features are adjusted with attention coefficients calculated
in the attention gate. Spatial regions are selected by examining both activations and
contextual information provided by the gating signal, which is obtained from a coarser
scaler. Attention coefficients are interpolated using trilinear interpolation. Similar to the
UNet architecture, Att-UNet treats channels and lag times equivalently.

Lastly, Res-UNet with attention (RA-UNet) is derived by utilizing an attention gate
and residual convolutional unit based on the traditional UNet. When compared with
regular forward convolutional units, a residual unit (Figure 5) is beneficial when training
deep architectures and significantly impacts model performance [71]. In RA-UNet, channels
and lag times are also treated equivalently.

Figure 5. Different variants of convolutional and recurrent convolutional units: (a) forward convolu-
tional units; (b) residual convolutional units.

4. Results
4.1. Quantitative Evaluation

The nowcasting accuracy of three distinct models on the testing dataset was rigorously
accessed by employing the CSI at thresholds of 0.1, 1.0, and 5.0 mm h−1. As shown in Figure 6,
the CSI metrics of all models surpassed the benchmark of 0.27 at the 0.1 mm h−1 threshold, sug-
gesting relatively reliable performance in forecasting precipitation events with 30–90 min of lead
time. Notably, for moderate and heavy rainfall intensities, a discernible decline in the CSI values
was observed, diminishing to approximately 0.18–0.26 and less than 0.10, respectively. Among
these models, RA-UNet demonstrated superior efficacy, which was particularly conspicuous in
events exceeding 5.0 mm h−1, where its CSI was observed to be double that of its counterparts,
underscoring its enhanced prediction skill for enhanced rainfall events.

The POD metric revealed uniformity across the models at a threshold exceeding
0.1 mm h−1, with each approximating a POD score of 0.35–0.50. However, a pronounced
decrement was noted as the precipitation rate intensified. The RA-UNet model exhib-
ited slightly superior performance at the 0.1 mm h−1 threshold in comparison with the
other models; moreover, it maintained a POD score of 0.06–0.12 in heavy rainfall con-
ditions, illustrating its robustness in forecasting severe precipitation events, in distinct
contrast to UNet and Att-UNet, which exhibited negligible predictive accuracy under
similar conditions.

An evaluation of the FAR further distinguished the models’ performance across
varying precipitation thresholds. At the 0.1 mm h−1 threshold, the highest FAR values
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for RA-UNet were comparable to the other two models. However, RA-UNet achieved the
lowest FAR at increased thresholds of 5 mm h−1. This trend suggested that the RA-UNet
model was predisposed toward predicting more intense rainfall, thereby enhancing both
the POD and CSI.

Figure 6 also shows an evaluation of the changes in the CSI, POD, and FAR metrics
across various forecast lengths for different models. It was observed that with an increase
in the forecast length, the forecast performance of these models tended to decline. This
decline was characterized by an increase in the FAR alongside decreases in the POD and
CSI. Specifically, for the CSI metric, the UNet and Att-UNet models exhibited a downward
trend for the 0.1 mm h−1 threshold as the forecast period extended from 30 to 90 min.
Conversely, the RA-UNet model demonstrated more stability in its forecasts, regardless
of whether they pertained to clear or rainy conditions. In scenarios of moderate to heavy
rainfall, it was noted that the CSI scores for all three models showed a marked decrease.
However, for heavy rainfall events and a forecast lead time of 30 min, the RA-UNet model
achieved a CSI score of 0.1, outperforming the other models at the 30 min forecast length.
This superior performance of the RA-UNet model was also reflected in the POD and FAR,
indicating a longer period of relatively reliable forecast availability for this model.

Figure 6. The critical success index, probability of detection, and false alarm ratio for three different
intensity thresholds (0.1, 1, and 5 mm h−1). The metrics are shown as a function of the lead time.
The blue, orange, and red lines, respectively, represent the forecast performance of the UNet model,
Att-UNet model, and RA-UNet model with the lead time.

Considering the strong seasonal features of precipitation, it was necessary to evaluate
the performance of the model in simulating precipitation for each month. The performance
of the three models for each month of 2018 is shown in Figure 7. Overall, it can be observed
that the performance of the three models for oceanic precipitation nowcasting showed clear
seasonal characteristics. For 0.1 mm h−1, the CSI was highest during the boreal summer
season (June/July/August), which corresponded to a high POD and a low FAR, which
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may be attributed to the fact that heavy precipitation is more likely to occur in the summer
months. In contrast, the CSI was lowest in the spring season (March/April/May), which
corresponded to a low POD and a high FAR, which may have been related to the fact that
spring is characterized by lower precipitation and a more complex nonlinear process [80].
In addition, RA-UNet had better performance than that of the other two models, especially
in the spring season. Meanwhile, RA-UNet tended to perform better in the summer season
compared with UNet and Att-UNet for moderate and heavy precipitation, which reflected
the potential of the model for summertime oceanic precipitation prediction. For heavy
precipitation at 5 mm h−1, the FAR of the three models showed missing values in March,
as no positive cases were detected in this month.

Figure 7. The critical success index (CSI), probability of detection (POD), and false alarm ratio (FAR)
for three different intensity thresholds (0.1, 1, and 5 mm h−1) averaged over 30–90 min forecasts
for each month of 2018. The metrics are shown as a function of the month. The blue, orange, and
red lines, respectively, represent the forecast performance of the UNet model, Att-UNet model, and
RA-UNet model in each month.

4.2. Examples

Two typical examples are provided: one of summer monsoon rainfall induced by
a monsoon trough and another of rainfall caused by a typhoon. An individual case of
monsoon precipitation demonstrated the efficacy of the three distinct models, as depicted in
Figure 8. This figure illustrates the inputs (brightness temperatures labeled in Figure 8a–c),
the evaluation truth (rain rates labeled in Figure 8d–f), and the outputs from the three
models—UNet, Att-UNet, and RA-UNet (represented in Figure 8g–o and depicting the rain
rates). For the purpose of brevity, only the visual representations from one band (band 16)
are exhibited. The input sequence (Figure 8a–c) highlighted three regions with cooler
brightness temperatures (corresponding to areas A, B, and C in Figure 8d–f). Diminished
brightness temperatures, on the other hand, usually indicated the development of convec-
tive clouds that favor precipitation formation [81], suggesting a heightened likelihood of
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precipitation in these locales. Subsequently, the evaluation truth (Figure 8d–f) revealed
a progressive diminution in the rain cloud densities in areas A, B, and C. This subtle at-
tenuation of precipitation intensity was adeptly captured by all three models, although
the detection of heavy precipitation remained an area necessitating enhancement. Among
the three, the RA-UNet model outperformed its counterparts in the 1.5 h nowcast for the
triad of precipitation clouds across areas A, B, and C, particularly excelling in mapping
the evolution of the rain cloud in sector C. This notable performance was likely due to
the inclusion of a residual structure within the model. This result coincided with the
analysis in Figure 6, which shows that the model with a residual structure exhibited better
performance. Conversely, the UNet and Att-UNet models exhibited moderate performance,
managing only to approximately delineate the spatial distribution of the rain clouds in
areas A and B, with predictions for cloud C being notably less distinct. Additionally, the
enhancements brought forth by the implementation of Att-UNet appeared to be marginal
in comparison with the base UNet model, which was potentially due to an insufficiency of
training samples specific to this forecasting task.

Figure 8. An example of a forecast during a summer monsoon. The brightness temperature (band 16) of
inputs (a–c), the ground truth (d–f), and nowcasts from the UNet (g–i), Att-UNet (j–l), and RA-UNet
(m–o) models corresponding to 30 min (first column), 60 min (second column), and 90 min forecasts.

During the testing period, a tropical cyclone event was observed to evaluate the
predictions of three models for heavy precipitation events. Tropical cyclone “Yutu”, also
known as Super Typhoon Rosita in the Philippines, was a powerful tropical storm with
extremely heavy rainfall that caused widespread destruction on the islands of Tinian
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and Saipan in the Northern Mariana Islands before moving on to impact the Philip-
pines. It formed on 21 October 2018 and dissipated on 3 November. For the forecast
time from 11:30 a.m. to 5:00 p.m. on 29 October 2018, the prediction results of the three
models are displayed in Figure 9. Similar to Figure 8, clear areas of vortex precipitation
were detected when the typhoon had already developed and matured. The prediction
results revealed that, overall, all three models were able to capture the evolving prediction
of heavy precipitation during typhoons. However, the UNet model showed weaknesses
in capturing the intensity of precipitation during the typhoon, while the Att-UNet model
showed some improvement. In contrast, the RA-UNet model demonstrated a better ability
to capture the precipitation intensity and its evolutionary development, consistent with the
previous result that the RA-UNet model was better for predicting extreme precipitation.

Figure 9. A prediction example that occurred during a typhoon. Brightness temperature (band 16)
of inputs ((a–c), 29 October 2018 at 11:30, 12:30, and 13:30, respectively), ground truth ((d–f),
29 October 2018 at 14:30, 15:00, and 15:30, respectively), and nowcasts from the UNet (g–i), Att-
UNet (j–l), and RA-UNet (m–o) models corresponding to 30 min (first column), 60 min (second
column), and 90 min forecasts.

5. Discussion and Conclusions

The present study developed a UNet-based approach to predict the oceanic rainfall
rate using Himawari-8 satellite images and GPM precipitation products. The satellite
observations underwent preprocessing steps, including spatiotemporal matching, missing
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value handling, threshold filtering, logarithmic transformation, and z-score standardiza-
tion, to prepare them to train the prediction models. Then, the models were evaluated
using a dataset of nearly one year. The quantitative assessments demonstrated that all
three UNet-based models had the ability to provide oceanic precipitation predictions within
30–90 min, with higher accuracy during boreal summer. By incorporating the attention
mechanism and residual structure, the RA-UNet model exhibited superior accuracy for
oceanic precipitation nowcasting than other models, especially for heavy convective rain-
fall. This highlights its potential for nowcasting heavy oceanic convective rainfall, such as
typhoon rainfall, as indicated by a typical case. The RA-UNet model presents a promising
opportunity for deep learning models to advance the nowcasting of oceanic precipitation.

This study demonstrates the applicability of satellite images to oceanic precipitation
nowcasting through deep learning methods that are potentially applicable to real-time
nowcasting. However, due to limited computational resources, only two years of data were
used for training and validation, and the relationship between the input variables and the
true values may not have been completely captured. Augmenting the volume of experi-
mental data may enhance the accuracy and reliability of the network model. Additionally,
the temporal and seasonal variability of precipitation data need to be examined in future
work. Season-specific predictions could be developed, particularly in winter, when there
is less convective activity, as well as during the spring, when more complex precipitation
processes occur [82]. The problem of imbalance between precipitation data samples in the
spring and winter seasons can be solved by increasing the weight of relevant precipitation
data during the training process. Furthermore, while bright cloud-top temperatures pro-
vide information about cloud properties and the related convection intensity, the absence
of three-dimensional dynamic and thermodynamic structures may reduce the reliability
of deep neural network models. Future work will consider incorporating other predic-
tors, such as forecasts of numerical weather models that illustrate the three-dimensional
atmospheric state, to improve the model’s forecasting capability and interpretability [61].
Furthermore, this study could also benefit from recent advancements in deep-learning
models such as SmaAt-UNet and EarthFormer. These models may prove valuable in
enhancing forecast accuracy and optimizing the operational efficiency of the predictive
model. These results will be reported in the near future.
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